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ABSTRACT

Traditionally, a 2-D block-based transform is always implemented 
through two separate 1-D transforms along each block’s vertical 
and horizontal dimensions. Such a framework is however not 
highly suitable for a directional 2-D source in which the dominant 
directional information is neither horizontal nor vertical. On the 
other hand, the R-D performance upper bound for all block-based 
transform coding schemes applied on such 2-D directional sources 
can be obtained by the non-separable Karhunen-Loève transform 
(KLT) – which  is unfortunately very expensive computationally. In 
this paper, we present a new framework for designing some non-
separable transforms that offer an R-D performance closer to that 
of the KLT, but can be implemented with nearly the same 
complexity as that of the discrete cosine transform (DCT).

1. INTRODUCTION

For an N-point random vector x= [x0,…,xN-1]
t
 with covariance 

matrix Rx = [rx (i, j)]N×N , we know that the so-called optimal 
Karhunen-Loève transform (KLT) can be derived from the eigen 
vectors of Rx. However, the KLT has some serious drawbacks. 
First, it is time-consuming to do the eigenvector decomposition on 
Rx . Second, no fast implementation can be derived for the KLT so 
that its implementation complexity (measured by the number of 
multiplications) is O(N 2).

In many practical cases, Rx can be modeled by a Toeplitz-type 
matrix with 
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When 1 (indicating a very strong inter-pixel correlation), it has 
been proven that the discrete cosine transform (DCT) can 
approximate the KLT closely [1], [2]. This DCT can be 
implemented in a fast way with complexity O(2N log2N).
Moreover, its complexity can be further reduced greatly, e.g., only 
13 multiplications are needed when N = 8 [3].  

In the video coding scenario, we know that the DCT is often 
applied on some residual signals that are obtained after the motion-
compensation (in a P-frame) or intra-prediction (in an I-frame). In 
either case, the inter-pixel correlation become much weaker or 
even negative so that the DCT surely will not work as efficiently 
as one expects.  

In the 2-D case with x= [xi,j]N×N , the correlation between two 
pixels A and B at locations (pA, qA) and (pB, qB) can be modeled as  
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More generally, the 2-D vector x may have a dominating 
orientation. To model this scenario, we need a new covariance 
matrix with 
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where  = b/a  1 represents the ratio of long and short radius of 
an elliptical function and 
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Compared with Eq. (2) that assumes a circular function, Eq. (3) 
uses an elliptical function rotated by an angle , as shown in Fig. 1. 
Clearly, a bigger  indicates a stronger directionality along the 
angle , and two models become identical if = 1. 

After concatenating all columns of x into a tall vector of length
N 2, a big N 2×N 2 covariance matrix Rx can be derived from Eq. (3). 
Then, one can derive the 2-D KLT through the eigenvector 
decomposition. Obviously, this KLT is non-separable and sets up 
the upper bound for the R-D performance for all block-based 
transform coding schemes. This work has been done by us recently, 
see [5]. As we said in the beginning, such an optimal KLT is very 
expensive computationally. For instance, for a 4×4 block, it needs 
16×16 = 256 multiplications, whereas the corresponding 2-D 
separate DCT needs only 32 multiplications (4 in each 4-point 
DCT). The goal of this paper is to design some non-separable 
transforms that can be implemented with nearly the same 
complexity as that of the separate 2-D DCT and, at the same time, 
will offer a better R-D performance (thus getting closer to that of 
the KLT). 

2. GIVENS ROTATIONS AND BUTTERFLY STRUCTURES

Any transform matrix used for image/video coding is usually a 
unitary one. In principle, a unitary matrix can be factorized into a 
product of multiple Givens rotations [4], whereas each such 
rotation can be implemented as a simple butterfly-type flow graph 
structure, see Fig. 2. Taking the 8-point DCT for example, its 
transform matrix can be decomposed into a total number of 13 
rotations [3]. Moreover, 10 out of them have angle = /4 and the 
other three angles are 3 /8, 3 /16, and 7 /16, respectively. 

p

q

p

q

b a

b
p’ 

q’

Fig. 1. Elliptical function and its rotated version used to model   
2-D directional sources 
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Intuitively, one can imagine that, fixed the butterfly structure, 
other rotation angles can also be adopted so as to obtain different 
transforms. Our task in this section is to analyze a generic butterfly 
structure: how to determine the rotation angles so as to maximize 
the coding gain. 

A. Optimal angle for one Givens rotation 
Let us start from the simplest case – one Givens rotation standing 
alone. Referring to Fig. 2(a), the node-variables before and after 
the rotation is related as  
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Let us denote the co-variance matrix of [x0 x1]T as r= [ri,j], and the 
co-variance matrix of [X0 X1]T as R = [Ri,j], i, j = 0 or 1. Then, we 
have the following result: 
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It is easy to know that the diagonal elements of R represent the 

variances of transform coefficients. Based on them, we can 
compute the coding gain as follows:  
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It can be shown that maximizing the coding gain G is equivalent to 
minimizing the product of R0,0 and R1,1. Substituting C into Eq. (6), 
we get 
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It is interesting to note from Eq. (8) that R0,0 + R1,1 = r0,0 + r1,1 =
constant! This is not surprising because the Givens rotation shown 
in Fig. 2(a) is an energy-preserving one. Because of this property, 
the minimal product of R0,0 and R1,1 can be obtained when R0,0 or 
R1,1 reaches its extreme value.  

Now, let’s focus on R0,0 (the same result can be obtained by 
focusing on R1,1). By taking the partial derivative of R0,0 (with 
respect to ) and setting it to zero, we can determine the “best” 
angle  as follows: 
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In practice, one may find that some modified rotation structures 
actually appeared in the butterfly implementation of a transform 
matrix. For instance, the structure shown in Fig. 2(b) is often 
encountered. Fortunately, our analysis shows that the “best” angle 

 is exactly the same as determined above in Eqs. (9) and (10). 

B. Parallel of multiple butterflies 
In practice, a number of rotations are often put into a parallel in 
order to construct one stage within any useful transform. Figure 3 
shows such a stage consisting of N butterflies in parallel. Because 
of the parallel nature, it is easy to understand that all butterflies in 
this parallel structure can be handled independently. That is, given 
r= [ri,j](2N 1)×(2N 1) - the co-variance matrix of [x0,…, x2N 1]T, each 
“best” rotation angle i, i = 0,…,N 1, can be determined 
independently by Eq. (9), with 
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Notice that this is an analytical and closed-form solution. Thus, 
once the input node-variables at any stage are paired to form a 
parallel of multiple butterflies, we can follow the closed-form Eq. 
(11) to determine all rotation angles analytically to achieve the 
maximum coding gain. 

C. The generic case - cascade of multiple stages 
In reality, it is always the case that multiple stages are cascaded to 
construct a useful implementation for any practical transform 
matrix, see Fig. 4 for one example. In this case, one can find that it 
becomes extremely difficult to solve the corresponding problem 
analytically, even when K = 2. Nevertheless, we can still get an 
analytical solution through the stage-by-stage strategy. That is, we 
can analytically determine all rotation angles involved in the first 
stage and compute the co-variance matrix of the output node-
variable; based on this new co-variance matrix, we can determine 
all rotation angles involved in the second stage and compute 
another new co-variance matrix; and so on. However, this stage-
by-stage strategy does not guarantee the optimality (global or even 
local) of the derived solution. 

On the other hand, once the overall implementation butterfly 

Fig. 2. Two butterfly structures to implement one rotation   
                       (a)                                                   (b) 
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structure is fixed, one can run an exhaustive search for all involved 
rotation angles to get the maximum coding gain. Typically, each 
rotation angle i ranges over [0  90 ]. Therefore, the search would 
soon become unaffordable when the total number of butterflies 
increases.  

In the following section, we will focus on the design of 4×4 
non-separable 2-D transform. A hybrid design strategy (a 
combination of the analytical solution and the full-search) will be 
developed for this very popular block size. 

3. DESIGN OF 4 4 NON-SEPARABLE 2-D TRANSFORM

We first convert the 4 4 2-D separate DCT into the equivalent 16-
point 1-D transform by concatenating four columns. This 1-D 
transform can be implemented using the flow-graph as shown in 
Fig. 5. There are totally 4 stages and each stage consists of 8 
butterflies in parallel. Notice that the extra structure before each 
stage (in a dashed-line box) is a permutation – which has no 
impact on the coding gain. Table I lists all pairs and the 
corresponding rotation angles appeared in Fig. 5. 

Next, we focus on how to design some new transforms based on 
the flow-graph shown in Fig. 5, i.e., to determine some rotation 
angles so that the resulting coding gain is maximized. Before we 
pursue this design, two remarks are necessary:  

This design is meaningful only when a strong directionality 
(other than the horizontal or vertical) is assumed in the 2-D 
source. Otherwise, the separate 2-D DCT will be very close to 
the optimal transform (which is the KLT) [5].  
Referring to Fig. 5, there are totally 4 stages, whereas the total 
number of butterflies is 32. Thus, it is obvious that a completely 
analytical solution is not possible, neither is the full-search on 
all involved 32 angles.  
Here, we follow the directional model shown in Fig. 1 and 

consider only one diagonal direction with = /4. 1  Since we 
cannot handle all four stages (with 32 butterflies) jointly, let’s 
handle two stages while fixing the other two. Obviously, it would 
be very beneficial to fix Stages-1 and 2 as all rotation angles 
involved are 45  so that no real multiplications are needed. 

Then, for the remaining two stages, we propose to perform a 
search on Stage-3 and make use of the analytical solution on 
Stage-4. The complexity of this hybrid fully depends on the search 

1 Another diagonal direction with  = /4 (or 3 /4) can be designed 
symmetrically, and these two are clearly the most important directions. 

process. Fortunately, the search can be carried out hierarchically: 
we do a coarse search (e.g., every 15  over [0  90 ]) and then 
refine the search on a smaller scale.  

Given , , and , the co-variance matrix can be derived from 
the elliptical model in Eq. (3). By setting = /4 and = 0.95, we 
designed two new transforms for = 5 and 7, respectively. The 
results are presented in Table II. Then, we compare them with the 
optimal (non-separable) KLT, the traditional separate 2-D DCT, 
and the separate 2-D KLT, with the corresponding coding gains 
presented in Table III. 

TABLE I. ROTATION ANGLES APPEARED IN FIG. 5
Stage

1
(0,15), 45  (1,14), 45  (2,13), 45  (3,12), 45
(4,11), 45 (5,10), 45  (6,9), 45  (7,8), 45

Stage
2

(0,3), 45  (1,2), 45  (4,7), 45  (5,6), 45
(8,11), 45 (9,10), 45  (12,15), 45  (13,14), 45

Stage
3

(0,1), 45 (2,3), 67.5  (4,5), 45  (6,7), 67.5
(8,9), 45 (10,14), 45  (12,13), 45  (11,15), 45

Stage
4

(0,4), 45 (1,5), 45  (2,6), 67.5  (3,7), 67.5
(8,12), 67.5 (9,13), 67.5  (10,11), 67.5  (14,15), 67.5

TABLE II. ROTATION ANGLES INVOLVED IN THE DESIGN TRANSFORMS

 = 5 
Stage 

3
(0,1),43 (2,3), 64  (4,5), 43  (6,7), 60
(8,9), 35 (10,14), 35  (12,13), 34  (11,15), 34

Stage 
4

(0,4), 47 (1,5), 27  (2,6), 26  (3,7), 
(8,12), 68 (9,13), 52  (10,11), 68  (14,15), 52

= 7 
Stage 

3
(0,1), 43 (2,3), 65  (4,5), 42  (6,7), 56
(8,9), 33  (10,14), 33  (12,13), 31  (11,15), 31

Stage 
4

(0,4), 47 (1,5),  (2,6), 27  (3,7), 
(8,12), 68 (9,13), 48  (10,11), 68  (14,15), 48

TABLE III. CODING GAINS OF VARIOUS TRANSFORMS

Non-separable 
2-D KLT 

New
Transform 

Separate   
2-D KLT 

Traditional 
2-D DCT 

= 5 1.2056 1.0441 1.0375 1.0202 
= 7 1.1082 0.8939 0.8835 0.8585 

It can be seen from Table III that the separate 2-D KLT is only 
slightly better than the traditional 2-D DCT. This is because that a 
much stronger correlation within this 2-D source is along the 
diagonal direction so that it becomes very inefficient to design the 
optimal KLT along the horizontal or vertical direction. On the 
other hand, the non-separable 2-D KLT offers a huge gain over the 
traditional 2-D DCT (by about 20%), indicating a big room for us 
to design new transforms to improve the performance. Finally, 
although our new transforms are still far from the optimal KLT, 
they are found to be slightly better than the separate KLT and 
therefore the traditional 2-D DCT. Some experimental results will 
be presented below to show that the “little” gain in our new 
transforms (as demonstrated above) will become more significant 
in the practical cases. 

Notice that there are several different flow-graphs equivalent to 
the one implemented in Fig. 5. We choose the structure of Fig. 5 
just as one example to illustrate our design procedure. The same 
procedure is applicable to other (equivalent) flow-graph structures, 
but perhaps leading to different (non-separable) transforms. 

4. EXPERIMENTAL RESULTS

In this section, we present some simulation results of testing our 
new transforms. In the first test, we synthesize an ideal sinusoidal 
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Fig. 5. Flow-graph of the equivalent16-point DCT 

2011 18th IEEE International Conference on Image Processing

3699



image patch (of size 64×64) that is oriented exactly along the 45
(diagonal) direction, see Fig. 6(a). Then, we apply the optimal 
KLT, our new transform (with = 7), and the traditional 2-D DCT 
to code this image patch. The R-D curves of these three transforms 
are shown in Fig. 7(a). It is no surprise that the optimal KLT offers 
a huge gain (over 10 dB) over the traditional DCT. It is also 
obvious that our new transform has filled up about one-fifth of this 
gap. Some visual results are shown in Fig. 6(b)-(d). 

In the second test, we choose a video frame or image from the 
commonly-used set and follow H.264 to decide the intra-prediction 
mode for each 4×4 block. We keep all blocks of Mode 3 or 4 (two 
diagonal modes). We do not do the intra-prediction; alternatively, 
we apply our new transforms (with = 5) on those blocks. We do 
not consider other blocks (that do not belong to Mode 3 or 4), i.e., 
the bit-count and the resulted distortion are computed for blocks of 
Mode 3 or 4. The R-D results for three test images are shown in 
Fig. 7(b)-(d), from which we can obtain very similar observations: 
(i) the optimal KLT offers a huge gain over the traditional DCT 
and (ii) this gap has been filled up partially through using our new 
transforms. 

It is noted from Fig. 7 that the bit-rate is pretty high. This is 
because that we did not do the intra-prediction so that H.264 
becomes inefficient. Our future work will consider the design of 
non-separable transforms for the predicted residual signals – some 
preliminary results have been reported for motion-compensated 
signals in [6]. 

5. CONCLUDING REMARKS

To our best knowledge, this is a very original attempt to design 
practical non-separable transforms for image and video coding. It 
becomes particularly meaningful for 2-D sources that have some 
dominating directions. Although the R-D performance achieved by 
our current design is still far below that of the optimal KLT, they 

do offer a remarkable gain over the traditional 2-D DCT. Their 
importance becomes higher by noticing that they can be 
implemented at the same complexity as that of the traditional 2-D 
DCT. 

The design mechanism is based on a fixed butterfly structure: to 
determine all involved rotation angles optimally to achieve the 
biggest coding gain. In our future work, we will relax this fixed 
structure so that any two node-variables at each stage can be paired 
– leading to the problem of how to find the best pairing strategy. 
We anticipate that a further improved R-D performance would be 
achieved by accommodating such a pairing strategy. 

Another future work is to apply this design framework to the 
intra-predicted signal in H.264 or the more recent HEVC so that 
the separate 2-D transforms that are currently adopted will be 
replaced by some non-separable transforms. 
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Fig. 7. R-D performance for (a) the synthetic image, (b) the first frame of “Foreman”, (c) the image Barbara, and (d) the image Straw. 

                                  
             (a) Original image                        (b) Non-separable KLT                       (c) New transform                      (d) Traditional 2-D DCT 

Fig. 6. Subjective comparisons of various transforms on the synthetic image (step-size = 50) 
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