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New Transforms Tightly Bounded by DCT and KLT
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Abstract—It is well known that the discrete cosine transform
(DCT) and Karhunen-Loéve transform (KLT) are two good
representatives in image and video coding: the first can be im-
plemented very efficiently while the second offers the best R-D
coding performance. In this work, we attempt to design some
new transforms with two goals: i) approaching to the KLT’s R-D
performance and ii) maintaining the implementation cost no
bigger than that of DCT. To this end, we follow a cascade structure
of multiple butterflies to develop an iterative algorithm: two out
of N nodes are selected at each stage to form a Givens rotation
(which is equivalent to a butterfly); and the best rotation angle
is then determined by maximizing the resulted coding gain. We
give the closed-form solutions for the node-selection as well as
the angle-determination, together with some design examples to
demonstrate their superiority.

Index Terms—Butterfly structure, discrete cosine transform,
Givens rotation, Karhunen—Loéve transform, R-D performance.

I. INTRODUCTION

HE discrete cosine transform (DCT) has been dominating
the area of image and video coding for more than three
decades, as evidenced by a number of coding standards, such as
JPEG, MPEG-1/2/4, and H.264, that are widely used in today’s
applications. Only very recently, a few research works have
re-visited the much older-aged Karhunen—Loéve transform
(KLT) and reported some interesting results [1]-[3]. Generally
speaking, both KLT and DCT are very good representatives:
KLT produces the best R-D performance; whereas DCT is
a robust approximation to KLT under some conditions [4].
However, the DCT’s performance would drop drastically when
these conditions are not met, especially in the 2-D case. To
justify this statement, Fig. 1 shows the coding performances of
two KLTs of 4 x 4 (one based on the statistics archived from the
image portion shown at the top-left corner and another based on
an analytical model as discussed later on) and the 2-D separable
DCT (all using H.264 without intraprediction). Notice that
the gap between these two transforms is quite big (27 dB),
meaning that we potentially have a big room to improve.
Another advantage of DCT is that it can be implemented very
efficiently; whereas no fast algorithms have so ever been de-
veloped for KLT. Very naturally, one would ask the following
question: can we design new transforms with R-D performance
asymptotically approaching to that of KLT while maintaining
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Fig. 1. Gap between KLT and DCT can be huge. Two other curves are the
results obtained by our new transforms.

the implementation complexity similar to or even below that of
DCT?

In this work, we present a very positive answer so that such
new transforms indeed can be designed for some important
scenarios.

II. SOME BAsIcs OF KLT AND DCT

Given the covariance matrix ¥ = [o; j]nx~ of a random
vector = [xg,...,2x_1]7, it is known that KLT can be de-
rived from the eigenvectors of X. In many cases, X is modeled
by a Toeplitz-type matrix whose elements are defined as

N1,

oi;=p" 0 5=0,1,... pl < 1. (1)
When p — 1 (indicating a very strong interpixel correlation),
it has been proven that DCT can approximate KLT very closely
[4].

In practice, one common scenario is that & contains a sharp
edge. In this case, two segments (before and after the edge) are
much less correlated or even uncorrelated. Then, we need to
modify 3 accordingly to make it to be block-diagonal.

In the 2-D case with £2p = {z, 4} v xx, the correlation be-
tween two pixels A and B at locations (p4,q4) and (p5, ¢5)
can be modeled as [5]

o(A,B) = pV/ s po)’ a0 0 < py g pp.qp < N.

2
After concatenating all columns of £op into a “tall” vector of
height N?, a big covariance matrix £ (of size N? x N?) is
obtained and the corresponding KLT can be derived. This KLT
is often non-separable and sets the performance upper-bound
for all block-based transform coding schemes [2].
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Fig. 2. Elliptical function and its rotated version used to model 2-D directional
sources.

More generally, the 2-D block z2p may have a dominating
direction—which can be horizontal, vertical, diagonal, or any
other as long as it can be defined in an N x N block. To model
this scenario, we need a new covariance matrix with

o(A, B) = pYH@ 7 &) 3)

where 7 = b/a > 1 represents the ratio of long and short radius
of a rotated elliptical function (see Fig. 2) and

dy(a) =
da(a) =
Notice that the model defined by (3) becomes identical to

(2) when n = 1. Now, let’s use C to denote the matrix of a
transform applied on z. The transformed coefficients are X =

(pa —pB)cosa — (g4 — qp)sina @
(pa —pp)sina+ (g4 —gp)cosa’

[Xo,-.-, s XN ,1] and the energy of each individual coefficient
is denoted as 2 %, - The coding gain achieved by applying C is
s
Go=—+ > logs (0%,). (5)
n=0

Three examples are presented below to show the difference be-
tween DCT and KLT.

A. 1-D Signal Containing a Sharp Edge

Suppose that a 16-point signal contains a sharp edge in middle
so that the first eight samples and the last 8§ samples are uncor-
related. Let’s further assume that each of two segments is mod-
eled by the same 8 x 8 Toeplitz matrix with p = 0.95. Then, we
derive the corresponding KLT. By applying it and the standard
16-point DCT, we obtain Gpor & 2.3196 and Gkrr = 2.9386,
respectively.

B. Directional 2-D Source (No Intra-Prediction)

Suppose that a 4 x 4 image block {x;, J}4><4, 1,7=0,...,3,
has the diagonal down-left(DDL) direction, i.e., &« = 45°. As-
suming 1y = 5 and p = 0.95, we use (3) to calculate the 16 x 16
covariance matrix and derive the corresponding KLT. Applying
it and the 2-D separable DCT, we obtain Gper =~ 2.0404 and
Gxrr = 2.4112, respectively.

C. Residual 1-D Source (After Intra-Prediction)

Consider the 4 x 4 image block again, but now with o =
90°, n = 5, and p = 0.95. Clearly, the dominating direction
is vertical so that we apply Mode-0 (in H.264) intraprediction.
After the intraprediction, we calculate the covariance matrix for
each column (all columns have the same result) and then derive

345

the corresponding KLT. The coding gain incurred by DCT is
Gper = 3.1169; whereas applying KLT results in Ggrr =
3.3232.

III. THE PROBLEM AND ITS SOLUTION

In all three scenarios presented above, we observed that KLT
performs much better than DCT. However, we know that DCT
can be implemented very efficiently, which is not true for KLT.
Now, the question we would like to solve is: how can we design
new transforms with performance asymptotically approaching
to that of KLT, while maintaining the implementation com-
plexity similar to or even below that of DCT.

A. Formulation of the Problem

In principle, any unitary transform matrix (of size N x N)
can be factorized into a product of Givens rotations [6], i.e.,

K
H (2h, Jk Or),

where the node-variables at each stage are numbered from 0 to
N — 1, and Q(ig, jr, i) is an N x N matrix representing the
Givens rotation (by fy) between two node-variables (i, j;.).
However, the difficulty in applying this result onto an obtained
KLT matrix is that there often exist many factorizations with
different K (the total number of Givens rotations). In most
cases, K is much bigger than L—the total number of butterflies
(equivalent to Givens rotations) used in the fast implementation
of the N x N DCT matrix. To maintain the DCT’s complexity,
one naive idea is to choose L Givens rotations from K candi-
dates, assuming that the factorization has been accomplished.
However, such an idea will not be working in practice because:
(1) it implies a huge combinational number (e.g., L is 32 in
the 4 x 4 2-D DCT) and (2) L selected rotations (with their
rotation angles fixed after the factorization) together cannot
guarantee a transform that is better than DCT.

Nevertheless, the above discussion does imply a feasible so-
lution: instead of selecting L out of K Givens rotations, we can
design Lo (< L) Givens rotations (that are different from those
obtained in the factorization) in such a way that the resulted
coding gain is optimized:

)ik £ e €{0,....N =1} (6)

maximize Gg
I IR
Lg
subject to C = H iz, 31, 61) @)

=1

This is to say that we need to determine, at each stage /, a “best”
pair of two nodes (i, j;) and the “best” angle #; so as to maxi-
mize the coding gain.

A simplified version of this problem has been studied in our
previous work [7] where we follow the DCT’s butterfly graph
exactly so that the pairing of nodes is avoided completely.
The optimization formulated in (7) has relaxed all variables,
including the indices. Clearly, the current problem becomes
harder to handle. In the following, we first present some results
for a standing-alone Givens rotation (already obtained in [7])
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and then construct an iterative algorithm for designing trans-
forms with performance asymptotically approaching the best
coding gain (that is achievable only by KLT).

B. Optimal Angle for a Standing-Alone Givens Rotation

Two nodes before and after a Givens rotation are related as

Xo L | e cosf  sind T
=0 0= _
{Xl] it [le],hl [—sinﬂ }’66 [0’ ]

cosf 2
Let’s denote the covariance matrix of [zoz1]? as r = [r(i, 5)].
Then, the covariance matrix of [X(X;]7 is R = QrQT. Ac-
cording to [7], the coding gain after applying the transform is
maximized by taking the rotation angle ¢ as follows:

¢
— 2
=9 Go
2

where

if (r(0,0) — 7(1,1)) - (#(0,1) + #(1,0)) > 0
otherwise

©)

o r(0,0) — 7(1,1)]

\/(7‘(0, 0) — r(1,1))* + (r(0,1) + 7~(1,0))2'
(10)

After applying the Givens rotation with angle given in (9), it
can be verified that (i) 12(0, 0)+R(1,1) = r(0,0)+r(1,1)—the
variance-preserving property of a unitary transform and (ii)
R(0,1) = R(1,0) = 0—meaning that two nodes are de-corre-
lated completely after the transform. The second result is exactly
the same as what can be achieved by KLT. Subsequently, we
have reached the optimal solution for a standing-alone butterfly
structure.

In practice, one may find that some modified rotation can ap-
pear in the butterfly implementation of a transform matrix. For
instance, the minus sign may appear on other element of {2 in
(8). Fortunately, our analysis tells that the “best” angle § will be
exactly the same as determined above.

b = cos

C. Solution to a Cascade of Multiple Givens Rotations

The results for a standing-alone Givens rotation derived
above suggests an iterative approach to the problem formulated
in (7) when the number of nodes N is greater than 2: in each
stage [, we choose a pair of two nodes in such a way that its
best angle #; (analytically determined from (9) and (10) for any
selection) leads to the maximum coding gain after performing
the Givens rotation (with angle 8;) on two selected nodes. Fol-
lowing our earlier notations, we also use r and R to represent
the covariance matrices of the node-variables before and after
the /th Givens rotation, respectively. Notice that there are NV
nodes so that both r and R have size N x N. The coding gain
achieved after the /th Givens rotation is

=~ 37 Z logy I?

n=0

77 n

(11)

As the {th Givens rotation takes place on two nodes (i, 1),
only two diagonal elements I2(n,n) would change after the
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transform, i.e., 7 = ¢; and n =
gain becomes

41. Upon this change, the coding

N-1
H R(n,n)

=0

1 . .o
GC = — N10g2 R(Zl,ll) X R(]l:,]l) X
n#j and nZk;
N-1
) X H’f’ n TL)

— 1 (Z]7JI)
= —N10g2<(1—r(“,?) 11
(12)

Based on (12), we now present our iterative algorithm as
follows:

1) The Algorithm: Given the initial covariance matrix X of
the input random vector £ = [zg,...,zx _1]7,setl = 0,7 =
¥}, and initialize the transform matrix with C = I (N x N
identity matrix).

1) For{ = 1 : Ly, search over IT = {0,1,...,N — 1} to

identify two integers (i, j;) that lead to the largest ratio -y,
where

Ji 1
“(Jus 1)

r(in, i) X r(jis i)

iz, i) X v(Jis i)

2) Calculate the best angle #; for the selected pair using (9)
and (10). Stop if the best angle derived is equal to 0; other-
wise, update the transform matrix C by €2(i;, j;, 8;) (with
all parameter determined): C «— Q(4;, j1,6;) - C.

3) Calculate the covariance matrix of the output nodes as
follow:

R=Q(i1,j1,60) - - Q7 (i, 51, 01)

and use it to replace r, i.e., 7 — . Go to the next iteration.
2) Convergence: Denoting the coding gain after the [th iter-
ation as GV, we have

GO >a D and

1 7
lim G(l) = GKLT = —/— Z 1Og2 A

l—o0

where G'kpr is the coding gain achieved by KLT and A;’s are
the eigenvalues of B.

Furthermore, our conjecture is that the convergence discussed
above will be reached in a finite number of iterations. We are
currently working on the proof and will report it in our future
work.

IV. DESIGN EXAMPLES

We first focus on the 4 x 4 block-size (commonly used in
H.264). Here, let us assume that the model (3) with o = 45°,
n = 5,and p = 0.95 is used, leading to Mode-3 or diag-
onal-down-left(DDL) mode. We can code such a 4 x 4 block
directly (without any intraprediction) or follow the H.264 stan-
dard to do the Mode-3 intraprediction. In either way, a 16 x 16
covariance matrix can be obtained so that we can drive the cor-
responding KLT. Since the separable 4 x 4 2-D DCT needs 32
butterflies totally (each 4-point DCT needs 4 butterflies), we first
set Ly = 32 when applying our iterative algorithm to design
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TABLE I
COMPARATIVE RESULTS OF DIFFERENT TRANSFORMS UNDER TWO SCENARIOS
4x4 block without 4x4 block with DDL
intra-prediction Intra-prediction
KLT DCT Ours KLT DCT Ours
Cg‘;;;‘g 24112 | 2.0404 | 2.3852 | 2.8956 | 2.5173 | 2.8748

Learning curve for 44 original block (DDLgo = 45, 1 =5,p=0.95)  Learning curve for 44 residual block (DDL o = 45, n = 5,p=0.95)

25 ST 25
£ 2 g 27
(9] o
2 1.5 2 15
3 3
o 1 o 1
Non-separable KLT Non-separable KLT
0.5} Traditional DCT 0.5 Traditional DCT
Y Pairing Strategy Algorithm Pairing Strategy Algorithm
0 0
5 10 15 20 25 30 5 10 15 20 25 30
iteration iteration
() (b)

Fig. 3. Asymptotic performances: (a) without intraprediction and (b) with the
DDL intraprediction.

Learning curve for 16-point 1D source with middle sharp edge
3 —7

2.5
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[©] 1
215
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0.5(4 1D DCT .
Pairing Strategy Algorithm
0
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iteration

Fig. 4. Asymptotic performances: 16-point 1-D source.

Fig. 5. Visual results coded with different transforms at the same bit-rate. All
in the first row are coded at 2.5 bits/pixel and the 2nd row at 3.5 bits/pixel. From
left to right, the transforms used are: training-based KLT, model-based KLT, 2-D
separable DCT, training-based new transform, and model-based new transform

(a) PSNR = 26.11 dB; (b) PSNR = 25.92 dB; (c) PSNR = 24.18 dB;
(d) PSNR = 25.18 dB; (e) PSNR = 25.21 dB; (f) PSNR = 30.18 dB;
(2) PSNR = 30.52 dB; (h) PSNR = 27.36 dB; (i) PSNR = 28.97 dB;

(i) PSNR = 20.05 dB.

new transforms (so that they have the same implementation cost
as the separable 4 x 4 2-D DCT). Some comparative results (in
terms of the coding gain) among the traditional DCT, the op-
timal KLT, and our new transforms are presented in Table I.

It is clear that our new transforms do offer a better perfor-
mance than the separable 2-D DCT in both scenarios (without or
with intraprediction). Next, let’s choose Ly < 32 so as to study
the asymptotic performances over the whole iterative procedure
as shown in Fig. 3: the performance of our new transform in ei-
ther case has actually surpassed that of DCT far before the 32nd
iteration. For instance, only 14 or 6 iterations are needed to de-
liver a performance better than that of DCT, which means a big
saving in the implementation cost. Meanwhile, we would like
to say that we also tried other sizes, such as 8 x 8, 16 x 16, and
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32 x 32, and even bigger improvements (over DCT) have been
obtained. We will report those results in our future works.

We then study the 1-D case. Here, we assume that a 16-point
signal contains a sharp edge in middle. We use an 8 x 8 Toeplitz
matrix to model the covariance matrix of both segments (before
and after the edge) and assume that two segments are uncor-
related. By choosing p = 0.95, we run our iterative algorithm
for designing a new transform. The learning curve is shown in
Fig. 4. Again, we found that the performance of our new trans-
form in this case has surpassed that of DCT after the 15th itera-
tion; whereas the 16-point DCT needs more than 32 butterflies.

On the other hand, we compute the covariance matrix from
the image portion shown in Fig. 1 or from the correlation model
given in (3) (with p = 0.99, o = 45°, and = 6). Two new
transforms are designed using our iterative algorithm (Lo =
32). These two transforms are then tested under the same en-
vironment (i.e., using H.264 without intraprediction) and their
R-D performances are also shown in Fig. 1 (two dashed curves).
It can be seen that these two R-D curves are much closer to the
KLTs’ performance curves: the improvement over DCT is more
than 1 dB. Finally, some visual results are given in Fig. 5 (under
the same bit-rate), from which one can see clearly that a much
improved visual quality has been obtained by using our new
transforms.

V. CONCLUDING REMARKS

To our best knowledge, this is the first attempt to designing
transforms that are asymptotically bounded by KLT (in terms
of the R-D coding performance) and DCT (in terms of the im-
plementation cost). To this goal, we have made use of the cas-
cade structure of multiple butterflies and developed an iterative
algorithm. We showed that the design at each iteration can be
simplified as finding a best pair of two nodes (out of N candi-
dates) and then determining the corresponding rotation angle to
get the maximum coding. We gave the closed-form solution to
both node-selection and angle-determination.

A few design examples have been presented to demonstrate
the effectiveness of these new transforms. Our future work will
be focusing on H.264 or HEVC intrapredicted signals. In this
scenario, each block belongs to a directional mode so that a
well-designed directional transform would be able to yield a
significant improvement, while being implemented at a similar
cost as that for the traditional DCT.
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