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ABSTRACT: The transform used in most image and video 
coding standards is the separable 2-D discrete cosine 
transform (DCT), which has been proven to be a robust 
approximation of the optimal Karhunen-Loève transform (KLT) 
for the 1st-order Markov sources with a large correlation 
coefficient. However, such separable 2-D DCT surely is not the 
best choice when it is applied on some residual or directional 
signals. Based on the butterfly architecture for DCT’s fast 
implementation, we present in this paper a novel design of non-
separable 2-D transforms that get much closer to the KLT but 
at the implementation cost no bigger than that of the DCT. The 
critical issue in our design is how to pair all node-variables in 
various stages of the butterfly structure. We propose a near-
optimal pairing strategy to solve this problem and present some 
examples to demonstrate its effectiveness. 

1. INTRODUCTION 

For an N-point random vector x = [x0,…,xN�1]
T with covariance 

matrix Rx = [rx (i, j)]N�N, we know that the KLT [1, 2] can be 
derived from the eigenvectors of Rx  to achieve the optimal R-D 
performance when a coding is involved. Under the 1st-order 
stationary Markov condition, Rx can be modeled by a Toeplitz-
type matrix with  
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When ��1 (a very strong inter-pixel correlation), it has been 
proven that the DCT can approximate the KLT closely [3].  

In the 2-D case with x2D = {xi , j}N�N, the correlation between 
two pixels A and B at locations (pA ,qA) and (pB ,qB) can be 
modeled as  
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More generally, one 2-D block x2D may have a dominating 
orientation. To model this scenario, we use a new covariance 
matrix with  
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where 
= b/a>1 represents the ratio of long and short radius of 
an elliptical function (see Fig. 1) and  
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Clearly, the dominating direction is along the angle 	 and the 
directionality becomes stronger as 
 gets bigger.   

Let’s use C to denote the matrix of a transform applied on x 
and X = [X0,…,XN�1]

T the transform coefficients. The coding 
gain achieved by using transform C is defined as the ratio of 
arithmetic mean to geometric mean of the coefficients’ 
variances [4]:  
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Since a unitary transform is variance-preserving, a simplified 
formula can be used to compute the coding gain as follows: 
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Meanwhile, the energy packing efficiency (EPE) [5] is defined 
as the energy portion contained in the M largest ones out of all 
N transform coefficients, i.e.,  
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In the following, we present examples to show the difference 
between the DCT and the KLT in two popular scenarios 
appeared in practice.  

A. Directional source (no intra-prediction) 
Suppose that a 4�4 image block {xi , j}4�4, i, j = 1,…,4 has the 
diagonal down-left (DDL) direction, i.e., 	 = 45o. The 4�4 2-D 
separable DCT can be converted into an equivalent 16-point 1-
D transform. Assuming 
= 5 and � = 0.95, we use Eq. (3) to 
calculate the covariance matrix of the 16-point vector and 
derive the corresponding KLT [6]. Applying the conventional 
DCT and the 16-point non-separable KLT respectively, we 
obtain the coding gain and EPE as: GDCT ≈ 2.0404 and 
EPEDCT(3) ≈ 0.8547 for DCT and GKLT ≈ 2.4112 and 
EPEKLT(3) ≈ 0.8929 for KLT (M = 3). 

B. Residual source (after intra-prediction) 

 
Fig. 1. Elliptical function and its rotated version used to model 

2-D directional sources. 



Consider the 4�4 image block again, but now with 	 = 90o, 

= 5, and � = 0.95. Clearly, the dominating direction is vertical 
so that we apply the Mode-0 (in H.264) intra-prediction. After 
the intra-prediction, we calculate the covariance matrix for each 
column (all columns have the same result) and then derive the 
corresponding KLT. The coding gain and EPE incurred by the 
DCT are GDCT ≈ 3.1169 and EPEDCT(2) ≈ 0.9147, respectively; 
whereas applying the KLT results in GKLT ≈ 3.3232 and 
EPEKLT(2) ≈ 0.9237 (M = 2).  

C. Observations and what to solve? 
In both scenarios (with and without intra-prediction), one can 
see clearly that the KLT performs much better than the DCT. 
However, one also knows that the computation complexity of 
the DCT is significantly lower than that of the KLT, thanks to 
its butterfly implementation [7]. Now, the question we would 
like to solve in this paper is: can we maintain a similar 
complexity as the DCT while achieving a performance 
asymptotically approaching to that of the KLT? In the 
remaining part of this paper, we will formulate this problem 
into an optimization and present an efficient solution so as to 
yield some “good” 2-D (non-separable) transforms.  

2. FROM BEST ROTATION ANGLES TO UNCONSTRAINED 
OPTIMIZATION  

In principle, a unitary transform matrix can be factorized into a 
product of multiple Givens rotations [8], defined as 
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where j and k are the indices of the two selected nodes among N 
candidates. Subsequently, one implementation of any given 
unitary transform is a cascade of multiple Givens rotations: 
G(jl,kl,�l), l = 1,…,L. From this perspective, our problem can be 
stated as the maximization of the coding gain over all G(jl,kl,�l), 
l = 1,…,L, for a given L (that is  selected to control the 
implementation cost).   

A. Optimal angle for a standing-alone Givens rotation 
Let’s start from the simplest case - one Givens rotation standing 
alone. Referring to Fig. 2(a), the node-variables before and 
after the rotation is related as  
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Let’s denote the covariance matrix of  [x0 x1]
T  as r = [r(i, j)] and 

the covariance matrix of [X0 X1]
T as R = [R(i, j)], i, j = 0 or 1. 

Then, we have R = CrC T. According to (7), the coding gain can 
be calculated as:  
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It can be shown that maximizing GC is equivalent to 
minimizing the product of R(0,0) and R(1,1) which are 
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Since R(0,0) + R(1,1) = r(0,0) + r(1,1) = constant (the variance-
preserving property of a unitary transform), the minimal 
product of R(0,0) and R(1,1) can be obtained when R(0,0) or 
R(1,1) reaches its extreme value. We omit the details and 
directly present the “best” angle � as follows:  
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The coding gain of the transform with the “best” angle is  
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where the Gorig is the coding gain before transform. It is 
interesting that, after applying the transform C with the best 
angle �, we obtain R(0,1) = R(1,0) = 0, which means two nodes 
are de-correlated completely and this is exactly the same as 
what the KLT can achieve. Subsequently, we have reached the 
optimal solution for a standing-alone butterfly structure.  

In practice, one may find that some modified rotation 
structure actually appear in the butterfly implementation of a 
transform matrix. For instance, the modified one shown in Fig. 
2(b) is often encountered. Fortunately, our analysis tells that the 
“best” angle � and GC are exactly the same as determined above 
in Eqs. (11) and (13), respectively. 

B. Unconstrained optimization 
Notice that the analytical and closed-form solution has been 
derived in Eqs. (11) and (12) to determine the “best” angle so 
as to maximize the coding gain for a standing-alone Givens 
rotation. For a generic butterfly structure with more than 2 
input node-variables, the optimization problem is much more 
complicated, as stated as follows:  
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that is, we should determine, at each stage l (L stages in total), a 
“best” pair of indices (indicating two node variables among N 
candidates) and the “best” angle. In our previous work [9], we 
proposed a hybrid strategy to solve the problem with some 

       
(a)               (b) 

Fig. 2. Two butterfly structures to implement one Givens rotation 



constraints in which the structure of the conventional 2-D 
DCT’s flow-graph is retained (as constraints) so that the 
optimization is only over �l of some G(jl,kl,�l). In this current 
work, we relax all variables, including the indices, to study the 
problem formulated in (14). Clearly, selecting a pair (jl,kl) 
among multiple node-variables leads to a much more 
complicated problem. A pairing strategy will be presented in 
the next section to solve this problem.  

3. PAIRING STRATEGY 
The results for a standing-alone Givens rotation derived earlier 
suggests an iterative approach to the problem formed above 
when the number of nodes comes to N > 2: in each stage l, we 
choose a pair of two nodes in such a way that its best angle �l 
(analytically determined from Eq. (11) for any selection) leads 
to the maximum coding gain after performing the Givens 
rotation (with angle �l) on two selected node variables. 
Following our earlier notations, we also use r and R to 
represent the covariance matrices of the node-variables before 
and after the l-th Givens rotation, respectively. Notice that there 
are N node-variables so that both r and R have size N�N. The 
coding gain achieved after the l-th Givens rotation is defined as 
follows:  
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As the l-th Givens rotation takes place on two nodes (jl,kl), only 
two diagonal elements R(i, i) would change after the transform, 
i.e., i = jl and i = kl. Upon this change, the coding gain now 
becomes:  
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Based on Eq. (16), we now present an iterative procedure to 
design transforms to approach the best coding gain (that is only 
achievable by the KLT) as follows,  
Pairing strategy algorithm: Given the initial covariance matrix 
r = [r(i, j)]N�N of the input random vector x = [x0,…,xN�1]

T, set 
l = 0, and initialize the transform matrix with C = I (identity 
matrix).  
1) For l = 1: L , search over ' = {0,1,…,N�1} to identify two  

integers (jl, kl) that lead to the largest ratio of r(jl, kl)�r(kl, jl) 
w.r.t. r(jl, jl)�r(kl, kl). 

2) Calculate the best angle for the selected pair �l using Eq. 
(14). Stop if the best angle derived is equal to 0; otherwise, 
update the transform matrix C by G(jl,kl,�l) (with all 
parameter determined): ),,( lll kjG ��(CC . 

3) Calculate the covariance matrix of the output node-
variables as follow:  

),,(),,( lll
t
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and use it to replace r, i.e., r�R. Go to the next iteration. 

Remark: When a modified butterfly structure appears, our 
analysis, once again, tells that the same result can be derived.  

Proposition (convergence): Denoting the coding gain after l-th 
iteration as G(l), we have  

)1()( �� ll GG  and �
�

�)*
���

1

0
2KLT

)( .log1
lim

N

i
i

l

l N
GG +  

where the GKLT is the coding gain achieved by the KLT and 
the +i are the eigenvalues of ,x - the covariance matrix of the 
original input random vector x = [x0,…,xN�1]

T.  
Proof: The inequality follows directly from Eq. (13). 

Considering the fact that GC can never exceed GKLT, the 
pairing transform algorithm will converge to a stable point. 
We can verify that the stable point is exactly the optimal GKLT.  
From the pairing strategy algorithm, one can find that, 
without any termination conditions, the coding gain G(l) keeps 
growing until all r(i, j) (i & j) becomes zero, which means: 
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t

x diag -- �CC . 

Since the transform matrix C obtained after each iteration is 
always a product of multiple Givens rotations (unitary 
matrices), C itself is also unitary all the time. Considering the 
fact that ,x is positive-definite and its eigenvalues are unique, 
the set of {-i}, i = 0,…,N�1, must be the same as the set of 
eigenvalues of ,x.                                                                    � 

4. RESULTS ON  4��4 NON-SEPARABLE TRANSFORMS 

We focus on the 4�4 block-size (commonly used in H.264). 
First, let us assume that the model with 	 = 45o, 
= 5, and 
� = 0.95 in Eq. (3) is selected, leading to Mode-3 or diagonal-
down-left (DDL) mode. We can code such a 4�4 block directly 
(without any intra-prediction) or follow the H.264 standard to 
do the Mode-3 intra-prediction. In either way, a 16�16 
covariance matrix can be obtained so that we can derive its 
KLT. Since the separable 4�4 2-D DCT (or the equivalent 16-
point 1-D DCT) needs 32 butterflies totally, we set L = 32 when 
applying our iterative pairing strategy to design a non-separable 
transform. Some comparative results (in terms of the coding 
gain and EPE) among the traditional DCT, the optimal KLT, 
and our new transforms are presented in Table 1.  

It is clear that our new transforms do offer a better 
performance than the separable 2-D DCT in both scenarios 
(without or with intra-prediction). More interesting results can 
be observed from the asymptotic performances over the whole 
iterative procedure as shown in Fig. 3: the performance of our 
new transforms in either case has actually surpassed that of the 
DCT way before the 32nd iteration is finished. For instance, 
only 14 or 6 iterations are needed to deliver a performance 
better than that of the DCT, which means a BIG saving in the 
implementation cost.  

5. CONCLUDING REMARKS 
We all know that the KLT and DCT stand for two good 
representatives in the area of image and video coding: the first 
offers the best R-D performance and the second can be 
implemented very efficiently. In this paper, we attempted to 
design some non-separable transforms (for 2-D data) with two 
goals: (1) approaching as closely as possible to the KLT’s R-D 
performance and (2) maintaining the DCT’s implementation 
complexity. 



We started the analysis from the standing-alone 2-point 
Givens rotation to derive the optimal close-form (analytical) 
solution. However, when the number of points comes to be 
more than 2, the global optimality is extremely hard to get 
analytically. To solve this problem, we developed an iterative 
pairing strategy algorithm: in each iteration, the problem can be 
simplified as finding a best pair of two nodes and then 
determining the corresponding rotation angle to get the 
maximum coding gain improvement. This strategy is 
particularly meaningful for cases where the traditional DCT is 
far from the KLT, e.g. directional or predicted sources.  

Some theoretical results have been provided to secure the 
algorithm’s convergence to the optimal KLT. Design examples 
have also been presented to show the superiority over the DCT. 
One of our future works is to try to prove that the convergence 
(to the KLT) will be reached in a finite number of iterations and 
further to determine this finite number. 
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TABLE 1. Comparative results for different transforms under two scenarios 

 
4�4 block without intra prediction 

(	 = 45o, 
 = 5, and � = 0.95) 
4x4 block with DDL intra prediction 

(	 = 45o, 
 = 5, and � = 0.95) 
KLT DCT Proposed KLT DCT Proposed 

Coding Gain 2.4112 2.0404 2.3852 2.8956 2.5173 2.8748 
EPE 0.8929 0.8570 0.8915 0.8245 0.7431 0.8191 
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Fig. 3. Asymptotic performances: (a) and (b) without intra-prediction; (c) and (d) with the DDL intra-prediction. 


